Aquatic locomotion

Swimming is biologically propelled motion through a liquid medium. Swimming has evolved a number of times in a range of organisms ranging from arthropods to fish to molluscs.

Contents

Evolution of swimming

Swimming evolved a number of times in unrelated lineages, and the evolutionary pressures leading to its adoption are unknown. Supposed jellyfish fossils occur in the Ediacaran, but the first free-swimming animals appear in the Early to Middle Cambrian. These are mostly related to the arthropods, and include the Anomalocaridids, which swam by means of lateral lobes in a fashion reminiscent of today's cuttlefish. Cephalopods joined the ranks of the nekton in the late Cambrian,[1] and chordates were probably swimming from the Early Cambrian.[2] Many terrestrial animals retain some capacity to swim, however some have returned to the water and developed the capacities for aquatic locomotion.

Invertebrates

Among the radiata, jellyfish and their kin, the main form of swimming is to flex their cup shaped bodies. All jellyfish are free-swimming, although many of these spend most of their time swimming passively. Passive swimming is akin to gliding; the organism floats, using currents where it can, and does not exert any energy into controlling its position or motion. Active swimming, in contrast, involves the expenditure of energy to travel to a desired location.

In bilateria, there are many methods of swimming. The arrow worms (chaetognatha) undulate their finned bodies, not unlike fish. Nematodes swim by undulating their fin-less bodies. Some Arthropod groups can swim - including many crustaceans. Most crustaceans, such as shrimp, will usually swim by paddling with special swimming legs (pleopods), however some arthropods can also propel themselves backwards quickly by flicking their tail, known as the Caridoid escape reaction. Swimming crabs swim with modified walking legs (pereiopods). Daphnia, an crustacean, swims by beating it antenna instead.

There are also a number of forms of swimming molluscs. Many free-swimming sea slugs, such as sea angels, flap fin-like structures. Some shelled molluscs, such as scallops can briefly swim by clapping their two shells open and closed. The molluscs most evolved for swimming are the cephalopods.

All cephalopods can move by jet propulsion, but this is a very energy-consuming way to travel compared to the tail propulsion used by fish.[3] The relative efficiency of jet propulsion decreases further as animal size increases. Since the Paleozoic, as competition with fish produced an environment where efficient motion was crucial to survival, jet propulsion has taken a back role, with fins and tentacles used to maintain a steady velocity.[4] The stop-start motion provided by the jets, however, continues to be useful for providing bursts of high speed - not least when capturing prey or avoiding predators.[4] Indeed, it makes cephalopods the fastest marine invertebrates,[5]:Preface and they can outaccelerate most fish.[6] Oxygenated water is taken into the mantle cavity to the gills and through muscular contraction of this cavity, the spent water is expelled through the hyponome, created by a fold in the mantle. Motion of the cephalopods is usually backward as water is forced out anteriorly through the hyponome, but direction can be controlled somewhat by pointing it in different directions.[7] Most cephalopods float (i.e. are neutrally buoyant), so do not need to swim to remain afloat.[3]

Among the Deuterostomia, there are a number of swimmers as well. Feather stars can swim by undulating their many arms [1]. Salps move by pumping waters through their gelatinous bodies. The deuterosomes most evolved for swimming are found among the vertebrates, notably the fish.

Jet propulsion

Jet propulsion is a method of aquatic locomotion where animals fill a muscular cavity and squirt out water to propel them in the opposite direction of the squirting water. Most organisms are equipped with one of two designs for jet propulsion; they can draw water from the rear and expel it from the rear, such as jellyfish, or draw water from front and expel it from the rear, such as salps. Filling up the cavity causes an increase in both the mass and drag of the animal. Because of the expanse of the contracting cavity, the animal’s velocity fluctuates as it moves through the water, accelerating while expelling water and decelerating while vacuuming water. Even though these fluctuations in drag and mass can be ignored if the frequency of the jet-propulsion cycles is high enough, jet-propulsion is a relatively inefficient method of aquatic locomotion.

Hydrozoan medusae, which use a one-way water cavity design, generate a phase of continuous cycles of jet-propulsion followed by a phase of rest. The Froude efficiency is measured to be at 0.09, which shows a very costly method of locomotion. The metabolic cost of transport for the medusa is high when compared to a fish of equal mass. Other jet-propelled animals have similar problems in efficiency. Scallops, which use a similar design, swim by quickly opening and closing their shells, which draws in water and expels it from all sides. This locomotion is used as a means to escape predators such as starfish. Afterwards, the shell acts as a hydrofoil to counteract the scallop’s tendency to sink. The Froude efficiency is low for this type of movement, about 0.3, hence why it’s used as an emergency escape mechanism from predators. However, the amount of work the scallop has to do is mitigated by the elastic hinge that connects the two shells of the bivalve. Squids swim by drawing and expelling water through their siphon and into their mantle cavity. The Froude efficiency of their jet-propulsion system is around 0.29, which is much lower than a fish of the same mass. Squid swim more slowly than fish, but use more power to generate their speed. The loss in efficiency is due to the amount of water the squid can accelerate out of its mantle cavity. [8]

Elasticity in Jet Propulsion

Much of the work done by Scallop muscles to close its shell is stored as elastic energy in abductin tissue, which acts as a spring to open the shell. The elasticity causes the work done against the water to be low because of the large openings the water has to enter and the small openings the water has to leave. The inertial work of scallop jet-propulsion is also low. Because of the low inertial work, the energy savings created by the elastic tissue is so small that it’s negligible. Medusae can also use their elastic mesoglea to enlarge their bell. Their mantle contains a layer of muscle sandwiched between elastic fibers. The muscle fibers run around the bell circumferentially while the elastic fibers run through the muscle and along the sides of the bell to prevent lengthening. After making a single contraction, the bell vibrates passively at the resonant frequency to refill the bell. However, in contrast with scallops, the inertial work is similar to the hydrodynamic work due to how medusas expel water - through a large opening at low velocity. Because of this, the negative pressure created by the vibrating cavity is lower than the positive pressure of the jet, meaning that inertial work of the mantle is small. Thus, jet-propulsion is shown as an inefficient swimming technique. [8]

Swimming in fish

Many fish swim through water by creating undulations with their bodies or oscillating their fins. The undulations create components of forward thrust complemented by a rearward force, side forces which are wasted portions of energy, and a normal force that is between the forward thrust and side force. Different fish swim by undulating different parts of their bodies. Eel-shaped fish undulate their entire body in rhythmic sequences. Streamlined fish, such as salmon, undulate the caudal portions of their bodies. Some fish, such as sharks, use stiff, strong fins to create dynamic lift and propel themselves. It is common for fish to use more than one form of propulsion, although they will display one dominant mode of swimming [9] Gait changes have even been observed in juvenile reef fish of various sizes. Depending on their needs, fish can rapidly alternate between synchronized fin beats and alternating fin beats [10]

Body-Caudal Fin (BCF) Propulsion

Median Paired Fin (MPF) Propulsion

Hydrofoils

Hydrofoils, or fins, are used to push against the water to create a normal force to provide thrust, propelling the animal through water. Sea turtles and penguins beat their paired hydrofoils to create lift. Some paired fins, such as pectoral fins on leopard sharks, can be angled at varying degrees to allow the animal to rise, fall, or maintain its level in the water column. The reduction of fin surface area helps to minimize drag, and therefore increase efficiency. Regardless of size of the animal, at any particular speed, maximum possible lift is proportional to (wing area) x (speed)2. Dolphins and whales have large, horizontal caudal hydrofoils, while many fish and sharks have vertical caudal hydrofoils. Porpoising (seen in cetaceans, penguins, and pinnipeds) may save energy if they are moving fast. Since drag increases with speed, the work required to swim unit distance is greater at higher speeds, but the work needed to jump unit distance is independent of speed. Seals propel themselves through the water with their caudal tail, while sea lions create thrust solely with their pectoral flippers. [9]

Drag Powered Swimming

As with moving through any fluid, friction is created when molecules of the fluid collide with organism. The collision causes drag against moving fish, which is why many fish are streamlined in shape. Streamlined shapes work to reduce drag by orienting elongated objects parallel to the force of drag, therefore allowing the current to pass over and taper off the end of the fish. This streamlined shape allows for more efficient use of energy locomotion. Some flat-shaped fish can take advantage of pressure drag by having a flat bottom surface and curved top surface. The pressure drag created allows for the upward lift of the fish.[9]

Appendages of aquatic organisms propel them in two main and biomechanically extreme mechanisms. Some use lift powered swimming, which can be compared to flying as appendages flap like wings, and reduce drag on the surface of the appendage. Others use drag powered swimming, which can be compared to oars rowing a boat, with movement in a horizontal plane, or paddling, with movement in the parasagittal plane.

Drag swimmers use a cyclic motion where they push water back in a power stroke, and return their limb forward in the return or recovery stroke. When they push water directly backwards, this moves their body forward, but as they return their limbs to the starting position, they push water forward, which will thus pull them back to some degree, and so opposes the direction that the body is heading. This opposing force is called drag. The return-stroke drag causes drag swimmers to employ different strategies than lift swimmers. Reducing drag on the return stroke is essential for optimizing efficiency. For example, ducks paddle through the water spreading the webs of their feet as they move water back, and then when they return their feet to the front they pull their webs together to reduce the subsequent pull of water forward. The legs of water beetles have little hairs which spread out to catch up and move water back in the power stroke, but lay flat as the appendage moves forward in the return stroke. Also, the water beetle’s legs have a side that is wider and is held perpendicular to the motion when pushing backward, but the leg is then rotated when the limb is to return forward, so that the thinner side will catch up less water. [12]

Drag swimmers experience a lessened efficiency in swimming due to resistance which affects their optimum speed. The less drag a fish experiences, the more it will be able to maintain higher speeds. Morphology of the fish can be designed to reduce drag, such as streamlining the body. The cost of transport is much higher for the drag swimmer, and when deviating from its optimum speed, the drag swimmer is energetically strained much more than the lift swimmer. There are natural processes in place to optimize energy use, and it is thought that adjustments of metabolic rates can compensate in part for mechanical disadvantages. [13]

Semi-aquatic animals compared to fully aquatic animals exhibit exacerbation of drag. Design that allows them to function out of the water limits the efficiency possible to be reached when in the water. In water swimming at the surface exposes them to resistive wave drag and is associated with a higher cost than submerged swimming. Swimming below the surface exposes them to resistance due to return strokes and pressure, but primarily friction. Frictional drag is due to fluid viscosity and morphology characteristics. Pressure drag is due to the difference of water flow around the body and is also affected by body morphology. Semi-aquatic organisms encounter increased resistive forces when in or out of the water, as they are not specialized for either habitat. The morphology of otters and beavers, for example, must meet needs for both environments. Their fur decreases streamlining and creates additional drag. The platypus may be a good example of an intermediate between drag and lift swimmers because it has been shown to have a rowing mechanism which is similar to lift-based pectoral oscillation. The limbs of semi-aquatic organisms are reserved for use on land and using them in water not only increases the cost of locomotion, but limits them to drag-based modes. [14] Although they are less efficient, at low speeds drag swimmers are able to produce more thrust than lift swimmers. They are also thought to be better for maneuverability due to the large thrust produced. [15]

Fast Starts and Mauthner Response

Varieties of fish, such as teleosts, use fast-starts to escape from predators. Fast-starts are characterized by the muscle contraction on one side of the fish twisting the fish into a C-shape. Afterwards, muscle contraction occurs on the opposite side to allow the fish to enter into a steady swimming state with waves of undulation traveling alongside the body. The power of the bending motion comes from fast-twitch muscle fibers located in the central region of the fish. The signal to perform this contraction comes from a set of Mauthner cells which simultaneously send a signal to the muscles on one side of the fish.[16] Mauthner cells are activated when something startles the fish and can be activated by visual[17] or sound-based stimuli.

Fast-starts are split up into three stages. Stage one, which is called the preparatory stroke, is characterized by the initial bending to a C-shape with small delay caused by hydrodynamic resistance. Stage two, the propulsive stroke, involves the body bending rapidly to the other side, which may occur multiple times. Stage three, the rest phase, cause the fish to return to normal steady-state swimming and the body undulations begin to cease. Large muscles located closer to the central portion of the fish are stronger and generate more force than the muscles in the tail. This asymmetry in muscle composition causes body undulations that occur in Stage 3. Once the fast-start is completed, the position of the fish has been shown to have a certain level of unpredictability, which helps fish survive against predators.[17]

The rate at which the body can bend is limited by resistance contained in the inertia of each body part. However, this inertia assists the fish in creating propulsion as a result of the momentum created against the water. The forward propulsion created from C-starts, and steady-state swimming in general, is a result of the body of the fish pushing against the water. Waves of undulation create rearward momentum against the water providing the forward thrust required to push the fish forward.[18]

Efficiency

Froude propulsion efficiency: ratio of power output to input

ηf= 2U1(U1+ U2)

U1 = free stream velocity, U2 = jet velocity

A good efficiency for Carangiform propulsion is between 50-80% [9]

Minimizing Drag

Pressure differences occur outside the boundary layer of swimming organisms due to disrupted flow around the body. The difference on the up- and down-stream surfaces of the body is pressure drag, which creates a downstream force on the object. Frictional drag, on the other hand, is a result of fluid viscosity in the boundary layer. Higher turbulence causes greater frictional drag.[8]

Reynolds number (Re) is the measure of the relationships between inertial and viscous forces in flow ((animal's length x animal's velocity)/kinematic viscosity of the fluid). Turbulent flow can be found at higher Re values, where the boundary layer separates and creates a wake, and laminar flow can be found at lower Re values, when the boundary layer separation is delayed, reducing wake and kinetic energy loss to opposing water momentum.[19]

The body shape of a swimming organism affects the resulting drag. Long, slender bodies reduce pressure drag by streamlining, while short, round bodies reduce frictional drag; therefore, the optimal shape of an organism depends on its niche. Swimming organisms with a fusiform shape are likely to experience the greatest reduction in both pressure and frictional drag.[19]

Wing shape also affects the amount of drag experienced by an organism, as with different methods of stroke, recovery of the pre-stroke position results in the accumulation of drag.

High-speed ram ventilation creates laminar flow of water from the gills along the body of an organism.

The secretion of mucus along the organism's body surface, or the addition of long-chained polymers to the velocity gradient, can reduce frictional drag experienced by the organism.

Buoyancy

Many aquatic/marine organisms have developed organs to compensate for their weight and control their buoyancy in the water. These structures, make the density of their bodies very close to that of the surrounding water. Some hydrozoans, such as siphonophores, has gas-filled floats; the Nautilus, Sepia, and Spirula (Cephalopods) have chambers of gas within their shells; and most teleost fish and many lantern fish (Myctophidae) are equipped with swim bladders. Many aquatic and marine organisms may also be composed of low-density materials. Deep-water teleosts, which do not have a swim bladder, have few lipids and proteins, deeply ossified bones, and watery tissues that maintain their buoyancy. Some sharks' livers are composed of low-density lipids, such as hydrocarbon squalene or wax esters (also found in Myctophidae without swim bladders), which provide buoyancy.[9]

Swimming animals that are denser than water must generate lift or adapt a benthic lifestyle. Movement of the fish to generate hydrodynamic lift is necessary to prevent sinking. Often, their bodies act as hydrofoils, a task that is more effective in flat-bodied fish. At a small tilt angle, the lift is greater for flat fish than it is for fish with narrow bodies. Narrow-bodied fish use their fins as hydrofoils while their bodies remain horizontal. In sharks, the heterocercal tail shape drives water downward, creating a counteracting upward force while thrusting the shark forward. The lift generated is assisted by the pectoral fins and upward-angle body positioning. It is supposed that tunas primarily use their pectoral fins for lift.[9]

Buoyancy maintenance is metabolically expensive. Growing and sustaining a buoyancy organ, adjusting the composition of biological makeup, and exerting physical strain to stay in motion demands large amounts of energy. It is proposed that lift may be physically generated at a lower energy cost by swimming upward and gliding downward, in a "climb and glide" motion, rather than constant swimming on a plane.[9]

Secondary evolution of swimming

While tetrapods lost many of their natural adaptations to swimming when they evolved onto the land, many have re-evolved the ability to swim or have indeed returned to a completely aquatic lifestyle.

Primarily or exclusively aquatic animals have re-evolved from terrestrial tetrapods multiple times: examples include amphibians such as newts, reptiles such as crocodiles, sea turtles, ichthyosaurs, plesiosaurs and mosasaurs, marine mammals such as whales, seals and otters, and birds such as penguins. Many species of snakes are also aquatic and live their entire lives in the water.

Even though primarily terrestrial tetrapods have lost many of their adaptations to swimming, the ability to swim has been preserved or re-developed in many of them. It may never have been completely lost.

Examples are: Some breeds of dog swim recreationally. Umbra, a world record-holding dog, can swim 4 miles (6.4 km) in 73 minutes, placing her in the top 25% in human long-distance swimming competitions.[20] Although most cats hate water, adult cats are good swimmers. The fishing cat is one wild species of cat that has evolved special adaptations for an aquatic or semi-aquatic lifestyle – webbed digits. Tigers and some individual jaguars are the only big cats known to go into water readily, though other big cats, including lions, have been observed swimming. A few domestic cat breeds also like swimming, such as the Turkish Van. In an unpublished research carried out 2002 at the University of Bern (Switzerland), Bender & Hirt showed that the Turkish Van has less inhibition to enter in shallow water compared to another breed, the Russian Blue. This behavior can be partially explained by the character of the Turkish Van, who seems to be more curious and enterprising than other cat breeds (see Widmer 1990).

Horses, moose, and elk are very powerful swimmers, and can travel long distances in the water. Elephants are also capable of swimming, even in deep waters. Eyewitnesses have confirmed that camels, including Dromedary and Bactrian camels, can swim,[21] despite the fact that there is little deep water in their natural habitats.

Both domestic and wild rabbits can swim. Domestic rabbits are sometimes trained to swim as a circus attraction. A wild rabbit famously swam in an apparent attack on U.S. President Jimmy Carter's boat when it was threatened in its natural habitat.[22]

The Guinea pig (or cavy) is noted as having an excellent swimming ability.[23] Mice can swim quite well. They do panic when placed in water, but many lab mice are used in the Morris water maze, a test to measure learning. When mice swim, they use their tails like flagella and kick with their legs.

Many snakes are excellent swimmers as well. Large adult anacondas spend the majority of their time in the water, and have difficulty moving on land.

Humans do not swim instinctively, but nonetheless often feel attracted to water, showing a broader range of swimming movements than other non-aquatic animals.[24] In contrast, many monkeys can naturally swim and some, like the proboscis monkey, crab-eating macaque, and Rhesus macaque swim regularly.

Large primates other than humans generally do not like to swim. Wild chimpanzees and some gorillas will wade in very shallow water but will make no attempt to cross larger bodies of water. Orangutans don't swim instinctively but will attempt it under pressure or if learned.

Among invertebrates, a number of insect species have adaptations for aquatic life and locomotion. Examples of aquatic insects include dragonfly larvae, water boatmen, and diving beetles. There are also aquatic spiders, although they tend to prefer other modes of locomotion under water than swimming proper.

Human swimming

Swimming has been known amongst humans since prehistoric times; the earliest record of swimming dates back to Stone Age paintings from around 7,000 years ago. Competitive swimming started in Europe around 1800 and was part of the first modern 1896 Summer Olympics in Athens, though not in a form comparable to the contemporary events. It was not until 1908 that regulations were implemented by the International Swimming Federation to produce competitive swimming.[25]

See also

References

  1. ^ Kröger, B.; Yun-bai, Y. B. (2009). "Pulsed cephalopod diversification during the Ordovician". Palaeogeography Palaeoclimatology Palaeoecology 273: 174–201. doi:10.1016/j.palaeo.2008.12.015.  edit
  2. ^ Shu, D. G.; Morris, S. C.; Han, J.; Zhang, Z. F.; Yasui, K.; Janvier, P.; Chen, L.; Zhang, X. L. et al. (Jan 2003), "Head and backbone of the Early Cambrian vertebrate Haikouichthys", Nature 421 (6922): 526–529, Bibcode 2003Natur.421..526S, doi:10.1038/nature01264, ISSN 0028-0836, PMID 12556891  edit
  3. ^ a b Wilbur, Karl M.; Clarke, M.R.; Trueman, E.R., eds. (1985), "11: Evolution of Buoyancy and Locomotion in recent cephalopods", The Mollusca, 12. Paleontology and neontology of Cephalopods, New York: Academic Press, ISBN 0-12-728702-7 
  4. ^ a b Wilbur, Karl M.; Clarke, M.R.; Trueman, E.R., eds. (1985), The Mollusca, 12. Paleontology and neontology of Cephalopods, New York: Academic Press, ISBN 0-12-728702-7 
  5. ^ Marion Nixon and J.Z. Young. (2003). The brains and lives of cephalopods. New York: Oxford University Press. ISBN 0-19-852761-6. 
  6. ^ By Daniel L. Gilbert, William J. Adelman, John M. Arnold Contributor Daniel L. Gilbert, John M. Arnold (1990). Squid as Experimental Animals (illustrated ed.). Springer,. ISBN 9780306435133. 
  7. ^ Campbell, Reece, & Mitchell, p.612
  8. ^ a b c Levinton, Jeffrey S. Marine Biology: Function, Biodiversity, Ecology. 3rd ed. New York, New York: Oxford University Press, 2008. Print.
  9. ^ a b c d e f g McNeill Alexander, R. Exploring Biomechanics: Animals in Motion. 2nd ed. New York, New York: W. H. Freeman & Co, 1992. Print.
  10. ^ Hale, Melina, R. Day, D. Thorsen, M. Westneat. 2006. Pectoral fin coordination and gait transitions in steadily swimming juvenile reef fishes. The Journal of Experimental Biology (209): 3708-3718. .
  11. ^ a b Sfakiotakis, Michael, D. Lane, B. Davies. 1999. Review of Fish Swimming Modes for Aquatic Locomotion. Journal of Oceanic Engineering (24:2) 237-252.
  12. ^ Lauder, G., and Jayne, B. Pectoral fin Locomotion in Fishes: Testing Drag-Based Models Using Three-Dimensional Kinematics. Oxford Journals. 2011.
  13. ^ Ohlberger, J., G. Staaks, and F. Hoker. Swimming efficiency and the influence of morphology on swimming costs in fishes. J Comp Physiol B. 176: 17-25. 2005.
  14. ^ Fish, Frank E. Biomechanics and Energetics in Aquatic and Semiaquatic Mammals: Platypus to Whale. Chicago Journals. 2011.
  15. ^ Walker, J., and M. Westneat. Mechanical Performance of aquatic rowing and flying. The Royal Society. 10.1098. 2000.
  16. ^ Wakeling, James M. and Ian A. Johnston. “Body bending during fast-starts in fish can be explain in terms of muscle torque and hydrodynamic resistance.” The Journal of Experimental Biology 202.6 (1999): 675-682.
  17. ^ a b Eaton, Robert C. et al. “The Mauthner-initiated startle response in teleost fish.” F. exp. Biol. 66 (1977): 65-81.
  18. ^ Wakeling, J.M. “Biomechanics of fast-start swimming in fish.” Comparative Biochemistry and Physiology Part A.131 (2001): 31-40.
  19. ^ a b Feldkamp, S.D. "Swimming in the California sea lion: morphometrics, drag, and energetics." J. exp. Biol. 131, 117-135 (1987).
  20. ^ SWIMMING DOG VIDEOS Swimming Background
  21. ^ The Straight Dope Mailbag: The Straight Dope Mailbag: Is the camel the only animal that can't swim?
  22. ^ News of the Odd - Jimmy Carter Attacked by Killer Rabbit (April 20, 1979)
  23. ^ Harkness, John E.; Wagner, Joseph E. (1995). The Biology and Medicine of Rabbits and Rodents. Williams & Wilkins. pp. 30–39. ISBN 0-683-03919-9. 
  24. ^ Bender, Renato. 1999a. Die evolutionsbiologische Grundlage des menschlichen Schwimmens, Tauchens und Watens: Konvergenzforschung in den Terrestrisierungshypothesen und in der Aquatic Ape Theory. Institut für Sport und Sportwissenschaft, Universität Bern.
  25. ^ Kehm, G (2007). Olympic Swimming and Diving:Great Moments in Olympic History. The Rosen Publishing Group. pp. 14. ISBN 1404209700.